• Uncategorized
  • 0

Kegunaan Clustering dalam data

Clustering atau klasterisasi adalah metode pengelompokan data. Menurut Tan, 2006 clustering adalah sebuah proses untuk mengelompokan data ke dalam beberapacluster atau kelompok sehingga data dalam satu cluster memiliki tingkat kemiripan yang maksimum dan data antar cluster memiliki kemiripan yang minimum.

Clustering merupakan proses partisi satu set objek data ke dalam himpunan bagian yang disebut dengan cluster. Objek yang di dalam cluster memiliki kemiripan karakteristik antar satu sama lainnya dan berbeda dengan cluster yang lain. Partisi tidak dilakukan secara manual melainkan dengan suatu algoritma clustering. Oleh karena itu, clustering sangat berguna dan bisa menemukan group atau kelompokyang tidak dikenal dalam data. Clustering banyak digunakan dalam berbagai aplikasi seperti misalnya pada business inteligence, pengenalan pola citra, web search, bidang ilmu biologi, dan untuk keamanan (security). Di dalam business inteligence, clustering bisa mengatur banyak customer ke dalam banyaknya kelompok. Contohnya mengelompokan customer ke dalam beberapa cluster dengan kesamaan karakteristik yang kuat. Clustering juga dikenal sebagai data segmentasi karena clusteringmempartisi banyak data set ke dalam banyak group berdasarkan kesamaannya. Selain itu clustering juga bisa sebagai outlier detection.

Konsep dasar Clustering

Hasil clustering yang baik akan menghasilkan tingkat kesamaan yang tinggi dalam satu kelas dan tingkat kesamaan yang rendah antar kelas. Kesamaan yang dimaksud merupakan pengukuran secaranumeric terhadap dua buah objek. Nilai kesamaan antar kedua objek akan semakin tinggi jika kedua objek yang dibandingkan memiliki kemiripan yang tinggi. Begitu juga dengan sebaliknya. Kualitas hasil clustering sangat bergantung pada metode yang dipakai. Dalam clustering dikenal empat tipe data. Keempat tipe data pada tersebut ialah:

  1. Variabel berskala interval
  2. Variabel biner
  3. Variabel nominal, ordinal, dan rasio
  4. Variabel dengan tipe lainnya.

Metode clustering juga harus dapat mengukur kemampuannya sendiri dalam usaha untuk menemukan suatu pola tersembunyi pada data yang sedang diteliti. Terdapat berbagai metode yang dapat digunakan untuk mengukur nilai kesamaan antar objek-objek yang dibandingkan. Salah satunya ialah dengan weighted Euclidean Distance. Euclidean distance menghitung jarak dua buah point dengan mengetahui nilai dari masing-masing atribut pada kedua poin tersebut. Berikut formula yang digunakan untuk menghitung jarak dengan Euclidean distance:

 

Keterangan:

N = Jumlah record data

K= Urutan field data

r= 2

µk= Bobot field yang diberikan user

Jarak adalah pendekatan yang umum dipakai untuk menentukan kesamaan atau ketidaksamaan dua vektor fitur yang dinyatakan dengan ranking. Apabila nilai ranking yang dihasilkan semakin kecil nilainya maka semakin dekat/tinggi kesamaan antara kedua vektor tersebut. Teknik pengukuran jarak dengan metode Euclidean menjadi salah satu metode yang paling umum digunakan. Pengukuran jarak dengan metode euclidean dapat dituliskan dengan persamaan berikut:

dimana  v1 dan  v2 adalah dua vektor yang jaraknya akan dihitung dan N menyatakan panjang vektor.

Partitional Clustering

Partitional clusteringyaitu data dikelompokkan ke dalam sejumlah cluster tanpa adanya struktur hirarki antara satu dengan yang lainnya. Pada metode partitional clusteringsetiap cluster memiliki titik pusat cluster (centroid) dan secara umum metode ini memiliki fungsi tujuan yaitu meminimumkan jarak (dissimilarity) dari seluruh data ke pusat cluster masing-masing. Contoh metode partitional clustering:  K-Means, Fuzzy K-means dan Mixture Modelling.

Metode K-means merupakan metode clustering yang paling sederhana dan umum. Hal ini dikarenakan K-means mempunyai kemampuan mengelompokkan data dalam jumlah yang cukup besar dengan waktu komputasi yang cepat dan efisien. K-Means merupakan salah satu algoritma klastering dengan metode partisi (partitioning method) yang berbasis titik pusat (centroid) selain algoritma k-Medoids yang berbasis obyek. Algoritma ini pertama kali diusulkan oleh MacQueen (1967) dan dikembangkan oleh  Hartigan dan Wong tahun  1975 dengan tujuan untuk dapat membagi M data point dalam N dimensi kedalam sejumlah k cluster dimana proses klastering dilakukan dengan meminimalkan jarak sum squares antara data dengan masing masing pusat cluster (centroid-based). Algoritma k-Means dalam penerapannya memerlukan tiga parameter yang seluruhnya ditentukan pengguna yaitu jumlah cluster k, inisialisasi klaster, dan jarak system, Biasanya, k-Means dijalankan secara independen dengan inisialisasi yang berbeda menghasilkan cluster akhir yang berbeda karena algoritma ini secara prinsip hanya mengelompokan data menuju local minimal. Salah satu cara untuk mengatasi local minima adalah dengan mengimplementasikan algoritma k-Means, untuk K yang diberikan, dengan beberapa nilai initial partisi yang berbeda dan selanjutnya dipilih partisi dengan kesalahan kuadrat terkecil (Jain, 2009).

K-Means adalah teknik yang cukup sederhana dan cepat dalam proses clusteringobyek (clustering). Algoritma K-mean mendefinisikan centroid atau pusat cluster daricluster menjadi rata-rata point dari cluster tersebut.Dalam penerapan algoritma k-Means, jika diberikan sekumpulan data X = {x1, x2, …,xn} dimana xi = (xi1, xi2, …, xin) adalah ystem dalam ruang real Rn, maka algoritma k-Means akan menyusun partisi X dalam sejumlah k cluster (a priori). Setiap cluster memiliki titik tengah (centroid) yang merupakan nilai rata rata (mean) dari data-data dalam cluster tersebut. Tahapan awal, algoritma k-Means adalah memilih secara acak k buah obyek sebagai centroid dalam data. Kemudian, jarak antara obyek dan centroid dihitung menggunakan Euclidian distance. Algoritma k-Means secara iterative meningkatkan variasi nilai dalam dalam tiap tiap cluster dimana obyek selanjutnya ditempatkan dalam kelompok yang terdekat, dihitung dari titik tengah klaster. Titik tengah baru ditentukan bila semua data telah ditempatkan dalam cluster terdekat. Proses penentuan titik tengah dan penempatan data dalam cluster diulangi sampai nilai titik tengah dari semua cluster yang terbentuk tidak berubah lagi (Han dkk, 2012).

Algoritma k-means:

Langkah 1: Tentukan berapa banyak cluster k dari dataset yang akan dibagi.

Langkah 2: Tetapkan secara acak data k menjadi pusat awal lokasi klaster.

Langkah 3: Untuk masing-masing data, temukan pusat cluster terdekat. Dengan demikian berarti masing-masing pusat cluster memiliki sebuah subset dari dataset, sehingga mewakili bagian dari dataset. Oleh karena itu, telah terbentuk cluster k: C1, C2, C3, …, Ck .

Langkah 4: Untuk masing-masing cluster k, temukan pusat luasan klaster, dan perbarui lokasi dari masing-masing  pusat cluster ke nilai baru dari  pusat luasan.

Langkah 5: Ulangi langkah ke-3 dan ke-5 hingga data-data pada tiap cluster menjadi terpusat atau selesai.

 

sumber : http://socs.binus.ac.id/2017/03/09/clustering/

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *